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Abstract —Equivalent transformations, which were recently derived for

mixed lumped and dktributed circuits, may be extended to circuits consist-

ing of honped reactance, resistors, and Iossy transmission lines. It is

shown that circuits consisting of a cascade connection of lumped element

sections and Iossy uniform transmission lines are equivalent to circuits

consisting of a cascade connection of lossy nonuniform transmission lines,

lumped elements, and ideal transformers. Furthermore, by considering the

limiting case of these transformations, equivalent transformations for cir-

cuits consisting of a cascade connection of lumped reactance, resistors,

and nonuniform transmission lines are obtained. Exact equivalent circuits

of Iossy even-order binomial form transmission lines are derived from these

equivalent transformations.

I. INTRODUCTION

R ECENTLY, NEW equivalent transformations for

mixed lumped and distributed circuits have been ob-

tained based on Kuroda’s identities. By using these new

transformations, a class of nonuniform transmission lines

may be derived with the circuits consisting of cascade

connections of lumped reactive elements, uniform trans-

mission lines, negative lumped reactive elements, and ideal

transformers. The network functions of these nonuniform

transmission lines can be obtained exactly without solving

the telegrapher’s equation [1], [2].

In microwave technology, lossy nonuniform transmis-

sion lines such as RC tapered transmission lines are useful

in component design, and the analysis of mixed lumped

and lossy distributed circuits may be necessary for the

design of matching sections, filters, and soon [3], [4].

In this paper, we discuss equivalent transformations for

circuits consisting of mixed lumped and 10SSYdistributed

circuits. First, we give the formal equivalent transformation

for a circuit consisting of a cascade connection of a parallel

(series) element and a lossy uniform transmission line

(LUE) of line length Z/n. This formal equivalent transfor-

mation may be applied n-times to a circuit consisting of a

cascade connection of a parallel (series) element and a

lossy transmission line of line length 1. By considering the

limit case of n ~ co and giving a certain condition between

the parallel (series) element values and the primary con-
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Fig. 1. The formal equivalent transformation for the circuit of a shunt

section and a LUE.

stants of the LUE, we show that the equivalent circuit of a

cascade connection of a lumped reactance, resistor, and a

LUE is given as a circuit consisting of a cascade connec-

tion of a 10SSYnonuniform transmission line, lumped reac-

tance, resistor, and an ideal transformer.

Next, general transformations for the mixed lumped and

lossy nonuniform distributed circuits are given. We show

that the equivalent circuit of a cascade connection of

lumped reactive and resistive elements and a lossy nonuni-

form transmission line becomes one consisting of a cascade

connection of a lossy nonuniform transmission line, lumped

reactive and resistive elements, and an ideal transformer. If

a characteristic impedance distribution W(x) of an original

lossy nonuniform transmission line can be integrated, a

characteristic impedance distribution Z(X) of a trans-

formed nonuniform transmission line may be uniquely

obtained using TV(X). By using these integral formulations

again and again, we may obtain the equivalent circuits of

even-order lossy binomial form nonuniform transmission

lines. The equivalent circuits of RC transmission lines and

?!GL transmission line are obtained as the special cases of

these equivalent tradformations.

II. EQUIVALENT TRANSFORMATIONS FOR MIXED

LUMPED AND LossY DISTRIBUTED CIRCUITS

A. Transformations for Circuits Consisting of a Cascade
Connection of a Parallel Lumped RL in Series and a Lossy
Unit Element

The equivalent representation of the circuit consisting of

a cascade connection of a shunt section and a 10SSYunit

element (LUE) shown in Fig. l(a) is given as a cascade

connection of a LUE, a shunt section, and an ideal trans-

former, as shown in Fig. l(b). In Fig. 1, Z and Z’ are the

impedances of shunt sections, WOand W’ are the character-

istic impedances of LUE’S, m is the transformation ratio of

the ideal transformer, and Z/n is the line length of a LUE.

The element values of the transformed circuit are given
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Fig. 2. The formal equivalent transformation for the circuit of a shunt
section and a LUE of line length of 1.

as follows:

z
w“=~oz+pwo (1)

Zf =
Z2

Z+pwo
(2)

Z+pwo
~.

z
(3)

where

and

TR+sL
Wo= —

G+sC

()p = tanhy i .
n

(4)

(5)

Where R, L, C, and G are primary constants of the LUE, y

is the propagation constant given as

y=~(R+sL)(G+sC) (6)

and s denotes the complex frequency.

If a lossless UE is considered and a parallel element is a

single short-circuited stub, we obtain Kuroda’s Identity [5].

The equivalent transformation shown in Fig. 1 can be

applied n-times (n: integer) to a circuit consisting of a

cascade connection of a shunt section and a LUE whose

line length is 1, as shown in Fig. 2. The transformed circuit

consists of a cascade connection of LUE’S with each line

length equal to l/n, a parallel element section, and an

ideal transformer. The element values of the transformed

circuit are given as follows:

Zz

np WO
Z.=

z
l+—

np W.

(i=l,2,...,n)

(7)

(8)

1
?nn=l+—

z“
(9)

np W.

The characteristic impedance of ~ in (7) and the trans-

(a) (b)

Fig. 3. The shunt section–LUE transformation.

former ratio rnn in (9) are functions of Z and p, so it is

difficult to realize the circuit shown in Fig. 2(b), physically.

But by setting the value of Z to be an appropriate one and

considering the limit case (n to infinity), we can obtain

physically realizable transformed circuits.

One of the suitable choices of parallel element is

Z= b(R+,sL)l (b: constant) (10)

where R and L are primary constants of the original LUE.

Here, we define the coordinates x of the ith LUE of the

transformed circuit as follows [1]:

~=L1.
n

(11)

By substituting (10) and (11) into (7)–(9), allowing n to

approach infinity, and using (6) we obtain

z. z

n@w np WO = nlimm n tanh y ( l/n ) W.

.— .Ylio(R+zsJ!J)z‘b (12)

W.
lim ~=

,X2-W(X)

()

(13)
n+m

l+ZT

limrn~=l++am (14)
n+cc

and

lim ZH=~= &( R+sL)l.
n+ce

(15)

At the limit, the Iossy cascaded transmission lines (CTL’S)

become a nonuniform transmission line whose characteris-

tic impedance distribution is W(x), the impedance of the

transformed parallel element becomes Z/m, and the trans-

formation ratio of the ideal transformer becomes constant.

This equivalent circuit is physically realizable.

Thus, the equivalent circuit of the cascade shown in Fig.

3(a) is a circuit consisting of a cascade connection of a

lossy nonuniform transmission line whose characteristic

impedance distribution is W(x), a series RL element in

parallel, and an ideal transformer, as shown in Fig. 3(b).
By using this equivalent transformation (shunt section–

LUE transformation), it may be shown that the equivalent

circuit of the nonuniform transmission line whose char-

acteristic impedance is W(x) in (13) may be expressed as a

circuit shown in Fig. 4.
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Fig. 4. The equivalent circuit of a lossy nonuniform transmission line of

W(x) given in (13).
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Fig. 5. The series section–LUE transformation.
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Fig. 6. The equivalent circuit of the lossy nonuniform transmission line
of w’(x) given in (16).

B. Transformations for Circuits Consisting of a Cascade
Connection of a Series Lumped GC in Parallel and a Lossy
Unit Element

In the same manner as described in Section II-A, we

obtain the dual transformation to the circuit consisting of-a

cascade connection of a series section of a LUE as shown

in Fig. 5, where a is a constant, G and C are primary

constants of LUE, and W’(x) is given by

()
2

W’(x)=wo 1+:; . (16)

By using this equivalent transformation, the equivalent

circuit of the nonuniform transmission line with character-

istic impedance distribution W’(x) in (16) is expressed by

the one shown in Fig. 6.

III. EQUIVALENT TRANSFOMTIONS FOR MIXED

LUMPED AND LossY NONUNIFORM DISTRIBUTED

CIRCUIT

The shunt section-LUE transformation shown in Fig. 1

may be applied n-times to the circuit consisting of a

cascade connection of a parallel impedance Z and CTL’S,

where the characteristic impedance of the i th LUE of the

CTL’S is given as

r~=hl ~ (h,: real constants, i=l,2,0 . .,n)

(17)

and the line length of each LUE is l/n. This equivalent

transformation (shunt section–CTL’s transformation) is

shown in Table I.

TABLE I

THE SHUNT SECTION-CTL’S TRANSFORMATION

m
Formulas

k, - 1 +; ~;lwi (j-1,2, —-,n) , k. - 1

“j-l& (3-1,2, ---,.) , Z“ -+
.

WI , Zi : ch.r.. teri, tic impedance

Z , Zm , imped.we of parallel .e. tim

P - tanh~(tln) : B%.bards q “ariable

TABLE II

THE SHUNT SECTION–NONUNIFORM TRANSMISSION LINE

TRANSFORMATION

original Qir.uit Equivalent circuit

I

I

Formula,

w(x) -%{ 1+.,(+) + .2(+) 2+--- 1 “’”m
L,-M.,

RO . bXE

TABLE III
THE SERIES SECTION–CTL’S TRANSFORMATION

Fmn,.las I

kj-l+:; wi (j-1,2, ---,n) , k. - 1
3.1

,,.3 (j-l, z,---, n) , Y“ - +
‘j-lk, m

Vi . Yi : .h.=act~ris, i= admitc..ce

Y , Yn : admi,,ence of series section

P = ,anhy(tln) : Richards q variable

Here, we assume that the shunt section is constructed as

a series RL whose element values are proportional to the

primary constants of each LUE of the original CTL’S.

Proceeding to the limit n ~ w, we obtain the equivalent

transformations of cascade connections of shunt sections

and nonuniform transmission lines shown in Table II.

In Table II, W(x) and z(x) are the characteristic imped-

ante distributions of the lossy nonuniform transmission
lines. Formulas in Table II can be obtained by the same

technique described in a previous paper [2] so that the

derivation may be omitted here.

The dual transformation for a series admittance Y and

CTL’S is shown in Table III. We assume that the series
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TABLE IV

THE SERIES SECTION–NONUNIFORM TRANSMISSION LINE

TRANSFORMATION

original .i.c.i, Equivalent circuit

1

t!jjq- ,,KJ’tjij[,,,x-o .=?.,, x. .=l

k,(x) - 1 ++ /’/’ .(,), (+) , ,(,) .++ , k,= k,(x) ,=,

w(x) = .;’[ 1+ .[(; ) + .;(; )2 +--- 1 “’=J=
co . am

.0 - .G,

section is constructed with a parallel combination of a

lumped capacitor and a resisto~ whose element values are

proportional to the primary constants of each LUE of the

original CTL’S. Proceeding to the limit n ~ co, we obtain

the equivalent transformation of the circuit consisting of a

cascade connection of a series section and a nonuniform

transmission line as shown in Table IV. In Table IV, w(x)

and y(x) are the characteristic admittance distributions.

IV. EQUIVALENT CIRCUITS OF LossY BINOMIAL

FORM NONUNIFORM TRANSMISSION LINES

By using the transformations shown in Tables II and IV,

we may obtain the equivalent circuits of lossy nonuniform

transmission lines. As an example, we show the equivalent

circuits of lossy binomial form nonuniform transmission

lines.

A. Second-Order Lossy Binomial Form Transmission Line

The equivalent circuit of a second-order binomial form

nonuniform transmission line is given in Fig. 4. Here, for

simplicity of notation, we replace the impedance Z in (10)

with Z,, where

z,= b,(R+sL)l. (18)

In this case, the formulas in Table II are expressed as

and

~“wod(;)=l++;k,(x) =l+~ ~

k*=kl(x)lx=l=l++

I

W. W.
zl(x)=—

()k,(x)’= 1 x 2“

l+~T

(19)

(20)

(21)

B. Fourth -Order Lossy Binomial Form Transmission Line

We consider the transformation shown in Table IV to

the circuit shown in Fig. 7 under the following conditions:

Y2=az(G+sC)l (22)

m.=-
,=0 x= L X=o ~=f,

(a) (b)

Fig. 7. The equivalent transformation of series section-nonuniform

transmission line of W2(x) given in (23).

and

()
2

W2(X)=W0–’ 1++; . (23)
1

If the coefficients az and b, satisfy the relation

b,= 3a2 (24)

we obtain

k2(x)=l+~[’1w,( A)d($)= (l++;)’ (25)

()kz= l++ 3=k;
1

(26)

and

‘Jx)=[++m-’27)
The characteristic impedance distribution l/y2(x) is the

fourth-order binomial form.

C. Sixth-Order Lossy Binomial Form Transmission Line

We set the characteristic impedance distribution as

w3(x)=J- () 1X4

‘Wo 1+~7
(28)

Y2(X)

and again apply the equivalent transformation shown in

Table II by setting

Z3=b3(R+sL)l. (29)

Under the condition

b1=5b3 (30)

we obtain the following relations:

()
5

k3(x)= l++;
I

()k3= 1+; 5=k;
1

‘3(X)=(1+:7)’”

(31)

(32)

(33)

,,

Here, we may obtain the equivalent circuit of sixth-order

lossy binomial form transmission line.

We may carry out these procedures in a sequential

manner and obtain the equivalent representations of even-
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TABLE V
EQUIVALENT CIRCUITS OF EVEN-ORDER LossY BINOMIAL Fow

NONUNIFORM TRANSMISSION LINES

Char,eteri. tic

i.~ed..ce dist. ibutic.n

w(x) - ITo(l ++;)4”

Eq.ivda.t circuit F.-1.8

% L21.1
- bL!/(4 i-3)

. bR1/(4 i-3)
‘21-1 (ill, *,_.,.)

G2.

Czi
- bC1/(4 i-1)

Czi
- bG!/(4 i-1)

(i-l, z,--.,m)

k-l+ llb, i.kzm

‘2.-1
—~—

(1.1,2,---,*1)

2.-1

1,.1+,/..1 ..2-: I..-
L2i

- aLt/( M-1)

—t—

Ez i
. aRt/(4 i-1)

(i-l, z,---,m)

‘kL2 ‘w2m-1 ‘kL2m
%i-1 . act/(4,-3)

‘2i.I - aG1/(4i.3)

(M,2,...). )

I

1
k-l+ lh, i-kzm
%-l - bLt/(4i.3)

Rzi-1
- bRt/(4 i-3)

(<.1,2, --.,.)

c2i
- bC1/(4 i-1)

%
. b0,/(4 i-1)

(i-1 ,2,---,.-1)

k-1+ 1/b, t-k2m-1

order lossy binomial form transmission lines. The four

types of equivalent circuits of even-order lossy binomial

form transmission lines are shown in Table V. These

equivalent circuits consist of cascaded ladder networks

constructed with parallel lumped GC and series lumped RL
arms, a lossy uniform transmission line, a ladder network

with negative lumped element values, and an ideal trans-

former.

For the special case of R,= G = O in the primary con-

stmits, the element values of the equivalent circuits become

lossless ones [1], [6]. For another practical case of L = G = O
in the primary constants, the original transmission lines

become even-order RC binomial form transmission lines,

and the equivalent circuit of this transmission line consists

of a cascade connection of a lumped RC ladder network,

an RC uniform transmission line, a lumped negative RC
ladder network, and an ideal transformer. Similarly, if we

set C = R = O in the primary constants, we obtain the

equivalent circuits of even order GL binomial form trans-

missiori lines.

V. CONCLUSIONS

We have shown equivalent transformations for the cir-

cuits consisting of mixed lumped and lossy nonuniform

transmission lines.

First, we showed the equivalent transformations for the

circuits consisting of a cascade connection of a parallel

element section of lumped RL series impedance and a
LUE, and for the dual case. Then by repeating these

procedures for the cascade connection of lumped reac-

tance and resistors and CTL’S, we showed the equivalent

transformations” for the mixed lumped and lossy nonuni-

form transmission lines in the limit case.

461 ‘

As an example, we showed the equivalent circuits of

even-order 10SSYbinomial form nonuniform transmission

lines. By using these equivalent circuits, the exact network

functions of lossy nonuniform transmission lines can be

derived without solving the telegrapher’s equation.
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High-Frequency Doubler Operation of GaAs
Field-Effect Transistors

CHRISTEN RAUSCHER, SENIOR MEMBER, IEEE

Abstract —A comprehensive study of single-gate GaAs FET frequency

doublers is presented. Speciaf emphasis is placed on exploring frigh-

frequency limitations, while yielding explanations for previously observed

lower frequency phenomena as well. Extensive Iarge-signaf simntations

demonstrate the underlying relationships between circutt performance char-

acteristics and principaf design parameter% Verifying experiments include

a straight frequency doubler and a self-oscillating doubler, both with output

signal frequencies in Ku-band. The self-oscillating doubler appears espe-

cially attractive, yielding an overafl de-to-RF efficiency of 10 percent. The

type of transistor employed in the numerical and experimental examples

possesses a gate length of 0.5 pm and a gate width of 250 pm.

Manuscript received September 29, 1982; revised January 27, 1983.
The author is with the Navrd Research Laboratory, Washington, DC

20375.

I. INTRODUCTION

E FFORTS currently directed toward increased utiliza-

tion of the millimeter-wave frequency range are pro-
viding a steady incentive to explore potential alternatives

to existing means of generating RF power at these frequen-

cies. In the solid-state domain, recent amplifier results

indicate that GaAs FET’s with subhalf-micron gate lengths

are capable of attractive fundamental frequency oscillation

up through at least 40 GHz. An appreciable extension in

the useful frequency range for RF power generation should,

in principle, be readily obtainable by exploiting device

nonlinear properties that permit efficient frequency multi-
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